Tan(x + pi) - cos (x + pi/2) =0
[Tan(x)+Tan(pi)]/(1 - tan(x)tan(pi)] - [ cos(x)cos(pi) - sin(x)sin(pi/2) ] = 0
[tan(x) + 0]/(1 - tan(x)(0)] - [ cos(x)(0) - sin(x)(1)] = 0
tan(x) + sin(x) = 0
tan(x) = -sin(x)
sin(x)/cos(x) = -sin(x)
sin(x) = -sin(x)cos(x)
sin(x) + sin(x)cos(x) = 0
sin(x)[1 + cos(x)] = 0
sin(x) = 0, 1 + cos(x) = 0
x =0 cos(x) = -1
x = pi
sin(x)/cos(x) = -sin(x)
sin(x) = -sin(x)cos(x)
sin(x) + sin(x)cos(x) = 0
sin(x)[1 + cos(x)] = 0
sin(x) = 0, 1 + cos(x) = 0
x =0 cos(x) = -1
x = pi
No comments:
Post a Comment